
Chapter 6

DATABASES, DATA

WAREHOUSES AND OLAP

2

Outline

• Introduction

• Database Management Systems and SQL

– Architecture of Database Management Systems

– Introduction to SQL

– Data Retrieval with SQL

• Select Command

• Aggregate Functions

• View Command

• Insert Command

• Update Command

• Delete Command

• Finalizing the Changes to the Database

– Query Optimization

• Data Warehouses

• Data Warehouses vs. RDMS

3

Outline

• Virtual Data Warehouses, Data Marts and Enterprise Data

Warehouses

• Architecture Of Data Warehouses

– Star, Snowflake and Galaxy Schemas

– Concept Hierarchy

• Multidimensional Data Models and Data Cubes

• On-Line Analytical Processing (OLAP)

• Data Retrieval with OLAP

• OLAP Server Architectures

• Efficiency of OLAP

• FASMI Test

• Example OLAP Tools

• Data Warehouses and OLAP for Data Mining

4

Introduction

Databases and data warehouses provide an efficient

data retrieval and summarization capabilities,

necessary to prepare and select data for the

subsequent steps of the knowledge discovery

process.

5

Introduction

Relation between databases/data warehouses and Data

Mining.

6

Database Management Systems

• Collection of interrelated data and a set of programs

to access those data

– the primary goal is to provide an environment that is both

convenient and efficient to use in retrieving and storing data

– they also provide design, update, and maintenance

capabilities

• We assume that such system contains information

about a single enterprise

7

Database Management

Systems

• Three layer structure

– view level

• the part of the database that is interesting to the user

• usually is it an extract consisting of a selected part of the data

stored in the DBMS

– logical level

• describes what data is stored in the database, and that

relationships exists among these data

– physical level

• describes how the actual data is stored

• Both, the physical and logical schema can be

modified without the need to rewrite the entire DBMS

application

Physical Level

Logical Level

View 1 View 2 View n

8

• Architecture
– query processor

• handles translation of queries or data
manipulation statements into read/write requests

– necessary because of data independence
i.e. queries are written in a language which hides the details of the
storage representation of the data

• query optimization handles deciding on the best (most efficient)
strategy for extracting the data needed to handle a particular
query

– storage manager

• handles disk space allocation, read/write operations, buffer and
cache management, etc.

– transaction manager

• handles issues related to concurrent multi-user access, and
issues related to system failures

Database Management

Systems transaction

manager

data
(disc storage)

meta data

indices

storage

manager

query processor

evaluation/optimization

INTERFACE

9

Data Retrieval in DBMS

• To retrieve and manipulate data, DBMS uses the

following three types of languages:

– Data Manipulation Language (DML) that retrieves or

modifies data

– Data Definition Language (DDL) that defines the structures

of the data

• i.e. statements that create, alter, or remove database objects

– Data Control Language (DCL) that defines the privileges

granted to database users

• DDL and DCL are used only by a DBA (Database Administrator)

or by the privileged user

• DML is used by regular users

• all three of them are handled by SQL

10

SQL

• Structured Query Language (SQL) allows users of

relational DBMS to access and manipulate data, and

to manipulate the database

– examples include Oracle, Sybase, Informix, MS SQL Server,

MS Access, and many others

– it is a powerful, nonprocedural language

• unlike other languages like C, Pascal, etc., it does not have control flow

constructs (e.g. if-then-else, do-while), and function definitions

• it has fixed set of data types, i.e. user cannot create own data types as it

is possible with other languages

– despite these limitations, it became a standard to perform

data retrieval operations

• other languages have extensions that enable using SQL

11

SQL

• SQL programs consist of the following 5 steps:

1. defining schema for each relation using SQL DDL

– used to create and manage database objects

– includes creation of tables and keys, which describe

relationships between tables

– example commands include: CREATE TABLE, ALTER TABLE,

DROP TABLE, CREATE INDEX, and DROP INDEX

2. defining privileges for users using SQL DCL

– used to create objects related to user access and privileges

– includes giving and revoking permissions to see and alter data

– example commands include: ALTER PASSWORD, GRANT,

REVOKE, and CREATE SYNONYM

12

SQL

3. populate the database by inserting tuples

– used to populate the database with initial data

– includes insertions of data into the created tables

– example commands include: SELECT, and INSERT

4. writing SQL queries

– used to perform various operations on the existing database

– includes inserting new tuples, modifying existing tuples,

creating views, updating privileges, etc

– example commands include: SELECT, INSERT, UPDATE,

DELETE, and VIEW

5. executing the queries

– once the database is created and initially populated, new SQL

statements are prepared and executed

– this most often happens online, i.e. they are executed while the

DBMS is running

13

SQL

• To write SQL queries we

– specify attributes that will be retrieved in the SELECT clause

– specify all tables (relations) that are involved/used in the

FROM clause

– specify conditions that constrain the desired operations

(e.g. join, select, subtract) in the WHERE clause

– words of wisdom

• be aware that the same attributes may appear in different relations

(tables) under different names

• although SQL is case insensitive, you should be cautious when

retrieving the contents of a field, since the stored data may be case

sensitive

• every SQL statement must be terminated by a single semicolon, even if

it is extended over many lines

14

SQL

• The most popular DML statements are

– SELECT, which is used to scan content of tables

• it cannot create or modify neither the content, nor the table

– VIEW, which is used to create a new database view

• view is a new table used for example to help design complex

queries (it is a soft filter, which is not physically created)

– INSERT, which is used to insert new data into a table

– UPDATE, which is used to modify existing data in a table

• but not to remove or add new records

– DELETE, which is used to remove a tuple from a table

• following, they are described in more details

– they constitute core statements for data retrieval task

15

SQL

• Example schema

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004

Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

16

SELECT

• Syntax

SELECT [* | all | distinct] column1, column2, ...

FROM table1 [, table2, ...]

[WHERE condition1 | expression1]

[AND condition2 | expression2]

[GROUP BY column1, column2, ...]

[HAVING conditions1 | expression1]

[ORDER BY column1 | integer1, column2 | integer2,

... [ASC | DESC]]

• [] define optional conditions

• keywords are denoted by blue letters

17

SELECT

– some rules

• it must contain the SELECT list (i.e. a list of columns or

expressions to be retrieved) and the FROM clause (i.e. the

table(s) from which to retrieve the data)

– distinct keyword is used to prevent duplicate rows being returned

– WHERE clause is used to filter out records that we are interested in

– example 1
find all account numbers (and their balances) with

loan balances bigger than 1000

SELECT AccountNumber, Balance

FROM Account

WHERE Balance > 1000

AND AccountType = ‘loan’

ORDER BY Balance DESC;

AccountNumber Balance

1000003 5000

1000006 1300

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

18

– example 2 (join between two tables)
find all customers who have both
a loan and another account type

SELECT distinct CustomerName

FROM Own, Borrow

WHERE Own.CustomerName = Borrow.CustomerName

ORDER BY CustomerName;

– example 3 (join with aliases between three tables)
find all customers, and their account types,
who have both a loan and other type of account;
rename corresponding columns as Name and Type

SELECT distinct O.CustomerName Name, A.AccountType Type

FROM Account A, Borrow B, Own O

WHERE O.CustomerName = B.CustomerName

AND (O.AccountNumber = A.AccountNumber OR

B.AccountNumber = A.AccountNumber)

ORDER BY CustomerName;

CustomerName

Joe Dalton

Will Smith

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

SELECT

Name Type

Joe Dalton saving

Joe Dalton checking

Joe Dalton loan

Will Smith checking

Will Smith loan

19

– query from example 2 can be written in several ways
find all customers who have both

a loan and other account

SELECT distinct CustomerName

FROM Own, Borrow

WHERE Own.CustomerName = Borrow.CustomerName

ORDER BY CustomerName;

SELECT distinct CustomerName

FROM Borrow

WHERE CustomerName IN (SELECT CustomerName FROM Own)

ORDER BY CustomerName;

SELECT distinct CustomerName

FROM Borrow

WHERE EXISTS (SELECT CustomerName FROM Own WHERE

Own.CustomerName = Borrow.CustomerName)

ORDER BY CustomerName;

CustomerName

Joe Dalton

Will Smith

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

SELECT

20

– query from example 2 can be written in several ways

• last two examples utilize so called nested queries

– such query utilizes some other query or queries to compute its

own result

– the redundancy in ability to express a given query in SQL is

necessary since not all commercial products support all

features of SQL

• it also gives flexibility in designing complex queries

SELECT

21

Aggregate Functions

• They map a collection of values into a single value

– allow to compute simple statistics of the data, which can be

used to make simple decisions

– five aggregate functions are

• avg(x) – average of a collection of numbers x

• sum(x) – sum of a collection of numbers x

• max(x) – max value among a collection of numbers or

nonnumeric data x

• min(x) – min value among a collection of numbers or

nonnumeric data x

• count(x) – cardinality of a collections of numbers or

nonnumeric data x

22

Aggregate

Functions

– example 4 (using aggregate functions)
find average balance and number of all loans

SELECT avg(Balance) average loan, count(Balance) count of loans

FROM Account

WHERE AccountType = ‘loan’;

– example 5 (using aggregate functions with GROUP BY)

• GROUP BY allows to compute values for a set of tuples

find all account types, and their maximum balances

but only if their average balance is more than 1000

SELECT AccountType, max(Balance)

FROM Account

GROUP BY AccountType

HAVING avg(Balance) > 1000

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

AccountType max(Balance)

checking 1605

loan 5000

average loan count of loans

2168.3 3

23

VIEW

• Syntax

CREATE VIEW view [(column_name_list)]

AS SELECT query

• view is the name of a view to be created

• column_name_list is an optional list of names to be used for

columns in the view

– if given, these names override the column names that would be

deduced from the SQL query

• query

– an SQL query that will provide the columns and rows of the view

– usually given as a SELECT statement

24

VIEW

– example
design a view that lists all customers that have a non loan account

together with their account types

CREATE VIEW CustomerAccounts (Name, Type)

AS SELECT CustomerName, AccountType FROM Own, Account

WHERE Own.AccountNumber = Account.AccountNumber;

CustomerAccounts

Name Type

Will Smith checking

Joe Dalton saving

Joe Dalton checking

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

25

INSERT

• Syntax

INSERT INTO table_name [('column1', 'column2')]

VALUES ('values1', 'value2', [NULL]);

• the SELECT statement can be used with the INSERT statement

to insert data into the table based on the results of a query

from another table

INSERT INTO table_name [('column1', 'colum2')]

SELECT [* | ('column1', 'column2')]

FROM table_name

[WHERE condition(s)];

26

INSERT

– example
add a new saving account for Will Smith with balance of 10000

INSERT INTO Own (AccountNumber, CustomerName)

VALUES (1000007,’Will Smith’);

INSERT INTO Account

VALUES (1000007,’saving’,10000);

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004
Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

1000007 saving 10000

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004

Will Smith 1000007

27

UPDATE

• Syntax

UPDATE table_name

SET column1 = 'value',

[column2 = 'value',]

[column3 = 'value']

[WHERE condition];

• the UPDATE statement is usually used with the WHERE clause

– otherwise, all records in the table for the specified column will be

updated

28

UPDATE

– example
the new saving account for Will Smith should have balance of 1000 (human

error)

UPDATE Account

SET Balance = 1000

WHERE AccountNumber = 1000007

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

1000007 saving 10000

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004

Will Smith 1000007

Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

1000007 saving 1000

29

DELETE

• Syntax

DELETE FROM table_name

[WHERE condition];

• removes an ENTIRE row of data from the specified table

• as with the UPDATE statement, the DELETE statement is

usually used with the WHERE clause

– otherwise, all records in the table will be deleted

30

DELETE

– example
Will Smith has closed his checking account with balance of 1605, and thus
this accounts should be removed

• we carefully select a row from Account table based on information from the Own table

DELETE FROM Account

WHERE Account Number =
(SELECT Account.AccountNumber FROM Own, Account

WHERE Own.AccountNumber = Account.AccountNumber

AND Account.Balance = 1605

AND Own.CustomerName = ‘Will Smith’);

DELETE FROM Own

WHERE CustomerName = ‘Will Smith’ AND AccountName = 1000001;

Account

AccountNumber AccountType Balance

1000001 checking 1605

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

1000007 saving 1000

Own

CustomerName AccountNumber

Will Smith 1000001

Joe Dalton 1000002

Joe Dalton 1000004

Will Smith 1000007

Borrow

CustomerName AccountNumber

Will Smith 1000005

Will Smith 1000006

Joe Dalton 1000003

Account

AccountNumber AccountType Balance

1000002 saving 1000

1000003 loan 5000

1000004 checking 1216

1000005 loan 205

1000006 loan 1300

1000007 saving 1000

Own

CustomerName AccountNumber

Joe Dalton 1000002

Joe Dalton 1000004

Will Smith 1000007

31

SQL

• When using DML statements, such as INSERT,
UPDATE and DELETE, the changes are finalized by
using the following commands:
– COMMIT, which makes the changes permanent

– ROLLBACK, which undoes current transaction

• transaction is understood as the last block of SQL statements

– SAVEPOINT, which marks and names current point in
processing a transaction

• lets undo part of a transaction instead of the whole transaction

– example
DELETE FROM Account

WHERE AccountNumber = 1000002;

1 row deleted

COMMIT;

commit completed, i.e. state of the database was physically updated

32

Query Optimization

• given a query, the DBMS interprets it and plans a

strategy for carrying it out

– user writes a query, the DBMS is responsible for evaluating it

in the most efficient way

• for all but the simplest queries there are several ways of

execution with total processing costs that can vary even by

several orders of magnitude

33

Query Optimization

Steps

1. Parsing

– query if broke up into individual words, called tokens, and the

query processor makes sure that query contains valid verb and

legal clauses, i.e. syntax errors and misspellings are detected.

2. Validation

– query is checked against the schema to verify that all tables

named in the query exist in the database, all columns exist and

their names are unambiguous, and if the user has the required

privileges

34

Query Optimization

Steps

3. Optimization

– query processor explores various ways to carry out the query.

– for instance, it may choose between first applying a condition to a

table A and then merging it with table B, or first merging the two

tables and then applying the condition

– optimization aims to use predefined indices to speedup

searching for data, and to avoid sequential searches through

entire tables by first reducing them though applying conditions

– after exploring alternatives, the optimal sequence of actions is

chosen.

35

Query Optimization

Steps

4. Execution plan preparation

– an execution plan for the query is generated

– it includes generation of an “executable code” that translates

the query into a sequence of low-level operations, such as

read/write.

5. Execution

– the query is executed according to the prepared execution plan

the cost of query evaluation can be computed in

• # of disc accesses

• CPU time to execute it

• cost of communication in a distributed system

• etc.

36

Data Warehouse

Data Warehouse is a subject-oriented, integrated, time-

variant, and nonvolatile collection of data in support

of management’s decision-making process

W.H. Inmon

– following each of these terms is explained

• the process of constructing and using data

warehouses is called data warehousing

37

Data Warehouse

Main features

– a database that is maintained separately from the

organization’s operational database for the purpose of

decision support

• provides integrated, company-wide, historical data for

performing analysis

• focuses on modeling and analysis of data for decision makers

– NOT used for daily operations and transaction processing

• subject-oriented

– organized around major subjects, like customer, product, sales

» provides a simple and concise view around particular subject issues by

excluding data that are not useful within the decision support process

» focuses on a subject defined by users

» contains all data needed by the users to understand the subject

38

Data Warehouse

Main features

– integrated

• it integrates multiple, heterogeneous data sources

– relational databases, flat files, and on-line transaction records

• during data warehousing, the data cleaning and integration

techniques are used

– main goal is to ensure consistency in naming conventions, attribute

types, etc. among different data sources

» e.g. see tables above
each comes from a different source: general DB, employment records,

and health records

inconsistencies in naming: StudentNo, StudentID, and ID

inconsistencies in values: Address in Employees and in Health

Students

StudentNo LastName MiddleInit FirstName Status …

234-99-9989 Doe W John Sr …

421-12-1121 Smith A William Jr …

Student Employees

StudentID Address Status NoHoursWeek …

234-99-9989 1001 West 11 St Apt 21 Sr 12 …

421-12-1121 3030 E 42 Ave Jr 20 …

Student Health

Name Address Phone ID …

John Doe 1001 W. 11 St # 21 223-4454 234999989 …

William Smith 3030 East 42 Ave 341-9090 421121121 …

39

Data Warehouse

Main features

– time-variant

• data warehouse has much longer time horizon than operational

systems

– operational database keeps only current value data (data snapshot)

– data warehouse provides information from a historical perspective

» e.g., past 5-10 years of data

• every key in the data warehouse contains a time defining

element, either explicitly or implicitly

– the key from operational data may or may not contain the time

defining element

40

Data Warehouse

Main features

– nonvolatile

• data warehouse is a physically separate storage of data that is

transformed from the operational data

• the operational updates of data DO NOT occur in a data

warehouse

– NO update, insert, and delete operations

» in an operational DB repetition of the same query can give

different results, but in a data warehouse they always give the

same result

» thus there is NO need for transaction processing, recovery, and

concurrency control

– performs only two data accessing operations

» initial loading of data

» read

41

Data Warehousing

Why they are feasible

– use relational DBMS technology

• well studied

• very good performance

– use recent advances in hardware and software

• high speed and large storage capacity

• many end-user computing interfaces and tools

– used to improve performance and provide user-friendly

display if useful information

42

DBMS and Data Warehouse

• Traditional DBMS uses OLTP (on-line transaction processing)

– used to perform transaction processing

• transactions are used to read and update data for day-to-day
operations

• Data warehouse uses OLAP (on-line analytical processing)

– used to perform data analysis and decision making

• static copy of data is used to generate useful information in a
read-only fashion

feature OLTP OLAP

target of the analysis customer oriented market oriented

type of data current and detailed historical and integrated

type of underlying DB design ER diagrams star model

type of access read and update read-only

queries less complex very complex

43

• DBMS

– tuned for OLTP

• access methods, indexing, concurrency control, recovery

• Data Warehouse

– tuned for OLAP

• complex OLAP queries, multidimensional views involving

GROUP BY and aggregative operators

– requires historical data that is not maintained by DBMS

– requires integration of data from heterogeneous sources

• uses reconciled and therefore consistent data representations,

codes and formats

– provides basis for analysis and exploration, that can be

used to identify useful trends and create data summaries

DBMS and Data Warehouse

44

DBMS and Data Warehouse

• Long comparison

feature OLTP OLAP

target users clerks, IT professionals decision support workers

concurrent users thousands up to hundreds

goal day-to-day operations decision support

designed to provide application-oriented

solution

subject-oriented solution

type of data current, flat relational, and

isolated

historical, multidimensional,

integrated, and summarized

unit of work transaction complex query

data accessing pattern frequently ad-hoc

type of access read and update, indexing read-only

accessed records / work unit tens up to millions

size MB to GB MB to TB

45

Why not Heterogeneous DBMS?

• Heterogeneous DB are integrated by building

wrappers/mediators

– use query driven approach

• require complex information filtering, and thus are

computationally expensive
– when querying a client database, a meta-dictionary is used to translate the

query into queries appropriate for individual heterogeneous databases

involved

– the returned results are integrated into a global answer

• Data warehouse

– information from heterogeneous sources is integrated and

stored in a warehouse for direct query and analysis

• very high performance
– possibility of precomputing frequently executed queries

46

Data Warehouse

Three models
– enterprise warehouse

• holds all information about subjects spanning the entire
company

– may take several years to design and build

– data mart

• a subset of the company-wide data that is of value to a small
group of users

– scope is confined to a specific groups of users, like marketing or customer
service

– can be a precursor or a successor of the actual data warehouse

– virtual warehouse

• a set of views over standard operational databases
– only some views may be materialized because of the efficiency issues

– easy to build but requires excess capacity on operational systems

47

Virtual Data Warehouse

operational

databases

decision support environment

End users directly access

operational data via middleware

tools

– feasible only if queries are

posed infrequently

• in this case the development of a

separate data warehouse is not

necessary

– can be used as a temporary

solution until a permanent data

warehouse is developed.

query

results

database

middleware

server

48

Generic Architecture of a Data

Warehouse

operational

databases

external

source

extraction, cleaning,

transformation and load

enterprise

warehouse

decision support environment

Two level architecture

• operational data

• enterprise data warehouse

– used as a single source

of data for decision making

49

Generic

Architecture of a

Data Warehouse

Three level architecture

• operational data

• enterprise data warehouse

– used as a single source

of data for decision making

• data marts

– provide limited scope data

selected from a data

warehouse

operational

databases

external

source

extraction, cleaning,

transformation and load

enterprise

warehouse

decision support environment

selection and

aggregation

data mart data mart

50

Three Tier

Architecture of a

Data Warehouse

Three level architecture

• bottom tier

– data warehouse server

• middle tier

– OLAP server for fast

querying of the data

warehouse

• top tier

– displaying results provided

by OLAP

– additional mining of the

OLAP generated data

operational

databases

external

source

extraction, cleaning,

transformation and load

data warehouse

output

DATA

monitoring administration

metadata

repository

data marts

BOTTOM TIER
data warehouse

server

MIDDLE TIER
OLAP server

OLAP

server

OLAP

server

TOP TIER
front–end tools

IF a THEN x

IF b AND a THEN w

IF b THEN x

querying / reporting simple analysis data mining

51

Metadata Repository

Holds data defining warehouse objects

– provides parameters & information for middle and top tier apps

• description of the structure of the warehouse
– schema, dimensions, hierarchies, data mart locations and contents, etc.

• operational meta-data
– currency of data, i.e. active, archived or purged, and monitoring information, i.e.

usage statistics, error reports, audit trails, etc.

• system performance data
– indices and hints to improve data access and retrieval performance

• information about mapping from operational databases
– source DBs and their contents, cleaning and transformation rules, etc.

• summarization algorithms

• business data
– business terms and definitions, ownership information, etc.

52

Data Warehouse

Data warehouse is based on a multidimensional data

model

– data is viewed in the form of a data cube

– data cube allows data to be modeled and viewed in multiple

dimensions

• dimensions represent different information

– item description (name, type)

– producer information (name)

– location information (cities)

– time (day, week, month, quarter, year)

• fact table spans multiple dimensions

– contains keys to each of the related dimension tables

– contains additional summary measures (like value of sold items in

dollars)

53

Data Warehouse

Data cube
– lattice of cuboids forms a data cube

– apex cuboid is the top most 0-D cuboid
• holds the highest-level of summarization

– base cuboid is an n-D base cube
all

time item producer

time, item time, producer time, location

location

item, producer item, location producer, location

time, item,

producer
time, item, location time, producer, location item, producer, location

time, item, producer, location

0–D (apex) cuboid

1–D cuboids

2–D

cuboids

3–D cuboids

4–D (base) cuboid

54

2–D Data Model

Relational table

– for location = “Denver” and producer = “Company A”

– describes number of sold units

month CPU_Intel CPU_AMD Prnt_HP Prnt_Lexmark Prnt_Canon

January2002 442 401 201 302 187

February2002 224 289 134 89 121

March2002 211 271 75 76 312

April2002 254 208 143 108 112

… … … … … …

55

3–D Data Model

3–D cube

– producer = “Company

A”

– describes number

of sold units

location = “Denver”

month CPU_Intel CPU_AMD Prnt_HP Prnt_Lexmark Prnt_Canon

January2002 442 401 201 302 187

February2002 224 289 134 89 121

March2002 211 271 75 76 312

April2002 254 208 143 108 112

… … … … … …

ti
m

e
 (

m
o

n
th

s
)

January 2002

February 2002

March 2002

April 2002

item (type/name)

Intel AMD HP Lexm Canon

CPU PRINTER

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

343 445 121 11 98

132 250 78 340 120

22 150 43 176 222

121 400 210 47 290

56

4–D Data Model

4–D cube

– different producers

– describes number of sold units

ti
m

e
 (

m
o

n
th

s
)

January 2002

February 2002

March 2002

April 2002

item (type/name)

Intel AMD HP Lexm Canon

CPU PRINTER

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

343 445 121 11 98

132 250 78 340 120

22 150 43 176 222

121 400 210 47 290

ti
m

e
 (

m
o

n
th

s
) January 2002

February 2002

March 2002

April 2002

item (type/name)

Intel AMD HP Lexm Canon

CPU PRINTER

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

343 445 121 11 98

132 250 78 340 120

22 150 43 176 222

121 400 210 47 290

item (type/name)

Intel AMD HP Lexm Canon

CPU PRINTER

343 441 301 32 178

214 291 34 119 141

201 243 98 176 121

54 82 132 18 121

332 125 111 151 18

121 150 88 34 180

45 187 83 112 43

121 200 120 21 57

item (type/name)

Intel AMD HP Lexm Canon

CPU PRINTER

22 41 11 12 87

28 89 14 92 21

19 71 52 65 27

54 28 35 138 29

43 45 21 55 38

12 20 28 34 20

22 15 34 16 22

11 40 21 74 29

Producer A Producer B … Producer K

57

Data Warehouse

Modeling
• provides subject-oriented schema to perform data analysis

through use of dimensions and measures

– star schema

• fact table in the middle, which is connected to a set of

dimension tables

– snowflake schema

• refinement of star schema where some dimensional tables are

normalized into a set of smaller tables, forming a shape similar

to a snowflake

– galaxy schema

• multiple fact tables share dimension tables

• a collection of stars is also called fact constellation

58

Star Schema
dimension table

key 1

attribute 1

attribute 2

attribute 3

…

attribute n1
fact table

key 1

key 1

key 3

key 4

key 5

data column 1

data column 1

…

data column k

dimension table

key 5

attribute 1

attribute 2

attribute 3

…

attribute n5

dimension table

key 4

attribute 1

attribute 2

attribute 3

…

attribute n4
dimension table

key 2

attribute 1

attribute 2

attribute 3

…

attribute n2

dimension table

key 3

attribute 1

attribute 2

attribute 3

…

attribute n3

m
e

a
s

u
re

s

59

Star Schema

Consists of

– single fact table containing

the data with no redundancy

• it has a primary key has only

one key column per dimension

• for the sake of efficiency

each key is generated

– single table per dimension

• each dimension is a single table

• highly denormalized

– it may not follow the Boyce-Codd normalization

» e.g. may contain redundant data

dimn table

key 1

attribute 1

attribute 2

attribute 3

…

attribute n1

fact table

key 1

key 1

key 3

key 4

key 5

data column 1

data column 1

…

data column k

dimn table

key 5

attribute 1

attribute 2

attribute 3

…

attribute n5

dimn table

key 4

attribute 1

attribute 2

attribute 3

…

attribute n4

dimn table

key 2

attribute 1

attribute 2

attribute 3

…

attribute n2

dimn table

key 3

attribute 1

attribute 2

attribute 3

…

attribute n3

60

Star Schema

• Information is extracted by

– performing join operation between the fact table and one or

more dimension tables followed by projections and selection

operations

• projection selects particular columns

• selection selects particular rows

• Benefits

– easy to understand, reduces number of physical joins to

extract information, requires very little maintenance

• Drawbacks

– does not provide support for attribute hierarchies

61

Example Star Schema
item

item_code

type

name

size

weight
sales

item_code

period_code

zip

manuf_code

units_sold

dollars_sold

dollars_cost

producer

manuf_code

name

phone

manager

headquarters

time

period_code

month

quarter

year

location

zip

country

city

street

#workers

62

Example Star Schema with Sample Data

sales

item_code period_code zip manuf_code units_sold dollars_sols dollars_cost

100 001 80234-17562 M01 315 315,000 215,000

100 001 80541-90876 M01 213 213,000 110,000

100 001 31546-89791 M01 24 24,000 45,000

121 004 98776-18765 M02 456 245,000 230,000

… … … … … … …

location

zip country city street #workers

80234-17562 USA Denver 14th street 34

80541-90876 USA LA Broadway St 123

31546-89791 USA NY 102th Ave 54

… … … … …

time

period_code month quarter year

0001 January 1 2002

0002 February 1 2002

0003 March 1 2002

0004 April 1 2002

… … … …

item

item_code type name size weight

100 CPU Intel PIII 10x30x0.1 111

104 CPU Intel PIV 10x30x0.1 101

121 CPU Intel Pentium 10x30x0.1 104

… … … … …

producer

manuf_code name phone manager headquarters

M01 CompuBus 451 334 5578 B.J. Smith Colorado, USA

M02 CyberMax 213 443 9018 W. Red Floryda USA

M04 MiniComp 776 552 1854 J. Mance Alberta, CA

… … … … …

63

Snowflake Schema

• Refinement of star schema where some dimensional
tables are normalized into a set of smaller tables,
forming a shape similar to snowflake
– normalized dimensions improve easiness of maintaining the

dimension tables and save storage space

• less redundancy

• however, the saving of space is, in most cases, negligible in
comparison to the typical magnitude of the size of the fact table

– usually represents and exposes concept hierarchy which
often relates to the aggregation levels

• Drawbacks
– large number of tables must be joined to support even the

most basic queries

– worse performance

64

Snowflake Schema
item

item_code

type

name

param_code

supplr_code
sales fact table

item_code

period_code

zip

manuf_code

units_sold

dollars_sold

dollars_cost

producer

manuf_code

name

phone

manager

headquarters

time

period_code

month

quarter

year

location

zip

state_code

street

#workers
state

state_code

country

city
supplier

supplr_code

zip

phone

manager

rating

parameters

param_code

size

weight

65

Galaxy Schema
item

item_code

type

name

param_code

supplr_code
production fact table

item_code

period_code

zip

manuf_code

units_build

dollars_cost

producer

manuf_code

name

phone

manager

headquarters

time

period_code

month

quarter

year

location

zip

state_code

street

#workers
state

state_code

country

city
supplier

supplr_code

zip

phone

manager

rating

parameters

param_code

size

weight
sales fact table

item_code

period_code

seller_code

units_sold

dollars_sold

seller

seller_code

country

city

street

phone

multiple fact tables share dimension tables
e.g. item is shared by both production and sales

66

Concept Hierarchy

Defines a sequence of mappings from a set

of very specific, low-level, concepts to

more general, higher-level, concepts

– e.g. concept of location

• each city can host multiple shippers defined by

their street address

– city values include Denver and Los Angeles

• each city is mapped to the state or province

where it belongs

• and finally state or province is mapped to the

country to which they belong street

city

state

country

67

Example Concept Hierarchy

street

city

state

country

all

U.S.A. Canada

California Colorado Ohio Alberta Manitoba

Fort Collins Denver Boulder

1233

Broadway

1324

West

6th ave.

68

Concept Hierarchy

Concept hierarchies are useful to perform OLAP

– data are organized in multiple dimensions where each

dimension contains multiple levels of abstraction defined by

concept hierarchies

• it gives flexibility to summarize data on various levels of

granularity

• and OLAP operations enable materialization of such views

69

Multi Dimensional

Data Model

3–D cube
– both time and item

have a hierarchical

structure

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

ti
m

e
 d

im
e

n
s

io
n

item dimension

343 445 121 11 98

132 250 78 340 120

22 150 43 176 222

121 400 210 47 290

2002

1 quarter

January

February

March

2 quarter

April

May

June

In
te

l

A
M

D

H
P

L
e

x
m

C
a

n
o

n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

187 Canon printers

were produced in January 2002

in Denver

70

OLAP

DWs use on-line analytical processing (OLAP) to

formulate and execute user queries

OLAP is an SLQ-based methodology that provides

aggregate data (measurements) along a set of

dimensions

71

OLAP

OLAP is a methodology that provides aggregate

data (measurements) along a set of dimensions,

where

– each dimension is described by a set of attributes

– each measure depends on a set of dimensions, which

provide context for the measure

• all dimensions are assumed to uniquely determine the

measure

72

OLAP

Basic operations
– Roll Up

• navigates to lower levels of detail
– takes current data object and performs a GROUP BY on one of the

dimensions

– example: given total production by month, it can provide production by a
quarter

– Drill Down

• navigates to higher levels of detail
– converse of the roll-up

– example: example: given total production in all regions, it can provide
production in USA

– Slice

• provides cut through the cube

• enables users to focus on some specific perspectives
– example: provides data concerning only production in LA

73

OLAP

Basic operations

– Pivot

• rotates the cube to change the perspective
– example: example: changing the perspective from “time item” to “time

location”

– Dice

• provides just one cell from the cube (the smallest slice)
– example: provides data concerning the production of Canon printers in May

2002 in Denver

» city, product name, and month are the smallest members in location,

product, time dimensions

74

Roll Up

Navigates to lower levels of

detail

– takes current data object

and performs a GROUP BY

on one of the dimensions

– example: given total

production by month, it can

provide production by a

quarter

• production in Denver

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

produced

units

2002

January February March April May June

CPU
Intel 442 224 211 254 187 112

AMD 401 289 271 208 234 267

produced

units

2002

Quarter 1 Quarter 2

CPU
Intel 877 553

AMD 961 709

roll up on dimension time

75

Drill Down

Navigates to higher levels of

detail

– converse of the roll-up

– example: given total

production in all regions, it

can provide production in

USA

• production in first quarter

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

produced

units

CPU Printer

Intel AMD HP Lexm Canon

All
USA 2231 2134 1801 1560 1129

Europe 1981 2001 1432 1431 1876

drill down on dimension location America

produced

units

CPU Printer

Intel AMD HP Lexm Canon

USA

Denver 877 961 410 467 620

LA 833 574 621 443 213

NY 521 599 770 650 296

76

Pivot

Rotates the cube to change

the perspective

– example: changing the

perspective from “time

item” to “time location”

• time is the fixed axis

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

556 321 432 432 341

453 564 654 213 231

123 234 345 112 232

476 871 123 134 112

876 123 324 124 119

213 432 112 153 143

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

produced

units

CPU Printer

Intel AMD HP Lexm Canon

quarter

1

January 442 401 201 302 187

February 224 289 134 89 121

March 211 271 75 76 312

pivot

D
e
n

v
e
r

L
o

s

A
n

g
e

le
s

N
e
w

Y
o

rk

P
a
ris

B
e
rlin

America Europe

lo
c

a
ti

o
n

d
im

e
n

s
io

n

produced

units

America Europe

Denver LA NY Paris Berlin

quarter

1

January 556 321 432 432 341

February 453 564 654 213 231

March 123 234 345 112 232

77

Slice and Dice

Perform selection and

projection on one or

more dimensions

78

Slice and

Dice

• Dice

– provides just one cell from
the cube (the smallest slice)

• example: provides data
concerning the production of
Canon printers in May 2002
in LA

• Slice

– provides cut through the
cube

– enables users to focus on
some specific perspectives

• example: provides data
concerning only production
in LA

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e
x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

231

321 301 211 102 287

224 89 234 29 321

121 211 321 56 122

534 218 45 228 322

287 324 67 123 123

232 217 211 342 56

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

2002 2 quarter May

time dimension

C
a
n

o
n

Printer

It
e

m

d
im

e
n

s
io

n

DICE

79

Slice

Provides cut through the cube

Enables users to focus on

some specific perspectives

– example: provides data

concerning only production

in LA

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

321 301 211 102 287

224 89 234 29 321

121 211 321 56 122

534 218 45 228 322

287 324 67 123 123

232 217 211 342 56

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

SLICE

drill down on dimension location USA

production in Los Angeles

produced

units

CPU Printer

Intel AMD HP Lexm Canon

2002
1 quarter 666 601 766 187 730

2 quarter 1053 759 323 693 501

production in all regions

produced

units

CPU Printer

Intel AMD HP Lexm Canon

2002
1 quarter 2231 2001 2390 1780 1560

2 quarter 2321 2341 2403 1851 1621

80

Star Schema for

Computer Sales

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

time

time_code

year

quarter

month
sales facts table

time_code

item_code

location_code

units_produced

item

item_code

kind

brand

location

location_code

continent

city

81

Relational

Representation

Each dimension is represented as a

relational table + a separate facts table

2002

1

quarter

January

February

March

2

quarter

April

May

June

time dimension

It
e

m

d
im

e
n

s
io

nIn
te

l

A
M

D

H
P

L
e

x
m

C
a
n

o
n

CPU Printer

442 401 201 302 187

224 289 134 89 121

211 271 75 76 312

254 208 143 108 112

187 234 45 98 98

112 267 111 78 12

time dimension table

time_code year quarter month

1 2002 1 January

2 2002 1 February

3 2002 1 March

4 2002 2 April

5 2002 2 May

6 2002 2 June

item dimension table

item_code kind brand

1 CPU Intel

2 CPU AMD

3 Printer HP

4 Printer Lexm

5 Printer Canon

location dimension table

location_code continent city

1 Europe Berlin

2 Europe Paris

3 America New York

4 America Los Angeles

5 America Denver

sales facts table

time_code item_code location_code units_produced

1 1 1 111

1 1 2 232

1 1 3 123

1 1 4 322

1 1 5 442

1 2 1 401

1 2 2 276

… ... … …

6 5 5 12

82

OLAP Cube for Computer Sales

time_code year quarter month

1 2002 1 January

2 2002 1 February

3 2002 1 March

4 2002 2 April

5 2002 2 May

6 2002 2 June

item_code kind brand

1 CPU Intel

2 CPU AMD

3 Printer HP

4 Printer Lexm

5 Printer Canon

location_code continent city

1 Europe Berlin

2 Europe Paris

3 America New York

4 America Los Angeles

5 America Denver

dice
location_code = 5

time_code = 1

item_code = 1

slice 1
location_code = 3-5

time_code = 1-3

item_code = 3-5

slice 2
location_code = 1-5

time_code = 5

item_code = 1-5

83

OLAP Cube for

Computer Sales

dice
location_code = 5

time_code = 1

item_code = 1

slice 1
location_code = 3-5

time_code = 1-3

item_code = 3-5

slice 2
location_code = 1-5

time_code = 5

item_code = 1-5

SQL statement for dice

SELECT units_produced

FROM location L, time T, item I, facts F

WHERE F.location_code = L.location_code

AND F.time_code = T.time_code

AND F.item_code = I.item_code

AND L.city = ‘Denver’

AND T.month = ‘January’

AND I.brand = ‘Canon’;

84

OLAP Cube for

Computer Sales

dice
location_code = 5

time_code = 1

item_code = 1

slice 1
location_code = 3-5

time_code = 1-3

item_code = 3-5

slice 2
location_code = 1-5

time_code = 5

item_code = 1-5

SQL statement for slice 1

SELECT units_produced

FROM location L, time T, item I, facts F

WHERE F.location_code = L.location_code

AND F.time_code = T.time_code

AND F.item_code = I.item_code

AND L.continent = ‘America’

AND T.quarter = ‘1’

AND I.kind = ‘Printer’;

85

OLAP Cube for

Computer Sales

dice
location_code = 5

time_code = 1

item_code = 1

slice 1
location_code = 3-5

time_code = 1-3

item_code = 3-5

slice 2
location_code = 1-5

time_code = 5

item_code = 1-5

SQL statement for slice 2

SELECT units_produced

FROM location L, time T, item I, facts F

WHERE F.location_code = L.location_code

AND F.time_code = T.time_code

AND F.item_code = I.item_code

AND T.month = ‘May’;

86

OLAP Cube for

Computer Sales

SQL statement for aggregative

analysis

– i.e. drill down and roll up

– e.g. analysis of production by year of production

SELECT SUM(units_produced)

FROM location L, time T, item I, facts F

WHERE F.location_code = L.location_code

AND F.time_code = T.time_code

AND F.item_code = I.item_code

GROUP BY T.year;

87

OLAP Cube for

Computer Sales

SQL statement for aggregative

analysis

– i.e. drill down and roll up

– e.g. analysis of production by quarter of production

SELECT SUM(units_produced)

FROM location L, time T, item I, facts F

WHERE F.location_code = L.location_code

AND F.time_code = T.time_code

AND F.item_code = I.item_code

GROUP BY T.quarter;

88

Browsing a Data

Cube

Visual browsing

– OLAP is used to pull

out the data

– data can be

interactively

manipulated

• different angles and

views

89

Implementation of OLAP

Server Architectures

– Relational OLAP (ROLAP)

• based on familiar, proven, and already known technologies

• uses extended-relational DBMS and OLAP middle ware to store

and manage warehouse data

– usually stores aggregations also as relations

• provides

– optimization of DBMS backend

– implementation of aggregation navigation logic

– and some additional tools and services

• good scalability

– relational DBMS are very advanced technology, which is proven to

be able to handle larger volumes of data

90

Implementation of OLAP

Server Architectures

– Multidimensional OLAP (MOLAP)

• uses n-dimensional array based multidimensional storage

engine and OLAP middle ware to manage warehouse data

– multidimensional queries map to server capabilities in a

straightforward way through direct addressing

• has poor storage and performance utilization for sparse data

• very good query performance by pre-calculation of

transactional data

– pre-calculates and stores every measure at every hierarchy

summary level at load time and stores them for immediate

retrieval using indexing

– full pre-calculation requires an enormous amount of overhead

both in processing time and in storage

91

Implementation of OLAP

Server Architectures

– Hybrid OLAP (HOLAP)

• user decides how to used multidimensional vs. relational

models

– e.g., relational for low level data, arrays for high-level data

The assumption is that a data warehouses stores huge

volumes of data

– therefore, methodologies for efficient cube computation and

indexing are necessary

92

Efficiency in OLAP

Several step can be taken to improve performance of

queries in OLAP:

– materialization of cuboids

• e.g. the most frequently accessed cuboids are materialized

– indexing

• bitmap indexing

– allows for very efficient search in data cuboids

• join indexing

– used for cross table searchers

– most commonly used to join fact table with a dimension table in

the start schema

93

Materialization of a Data Cube

Full materialization

– physically materialize the whole data cube

– fastest query response, but requires heavy pre-computing

and very large storage space

• it is unrealistic to pre-compute and materialize all of the

cuboids that can be generated for a given data cube

• usually this approach is too expensive

No materialization

– nothing is materialized

– slowest query response, always requires dynamic query

evaluation, but less storage space

• very slow response time for complex queries causes necessity

for some materialization

94

Materialization of a Data Cube

Partial materialization

– selected parts of a data cube are materialized

– gives a balance between the response time and required

storage space

– requires

• identification of a the subset of cuboids that will be

materialized

• exploitation of the materialized cuboids during query

processing

• efficient updating of the materialized cuboids during each load

and refresh

95

Indexing in OLAP

Bitmap indexing

– index is performed on chosen columns

• each value in the column is represented by a bit vector

– the length of the bit vector is equal to the number of distinct

records in the base table

– the ith bit is set if the ith row of the base table has the value for the

indexed column

– join and aggregation operators are reduced to bit arithmetic

• and bit operations are very fast, even faster than hash and tree

indexing

– works best for low cardinality domains

• low number of values for an attribute

• for high cardinality domains it may be adapted using

compression techniques

96

Indexing in OLAP

Bitmap indexing

– example

item dimension table

item_code kind brand

1 DVD drive HP

2 DVD drive Intel

3 HDD HP

4 HDD Seagate

5 DVD drive Samsung

6 HDD Intel

7 HDD Seagate

index on kind

record_code DVD drive HDD

1 1 0

2 1 0

3 0 1

4 0 1

5 1 0

6 0 1

7 0 1

index on brand

record_code HP Intel Seagate Samsung

1 1 0 0 0

2 0 1 0 0

3 1 0 0 0

4 0 0 1 0

5 0 0 0 1

6 0 1 0 0

7 0 0 1 0

to finding all rows where brand is either HP or Intel

– 1000 OR 0100 = 1100

– thus rows 1, 2, 3, and 6 are selected

97

Indexing in OLAP

Join indexing

– traditional indices map the values of an attribute to a list of

record IDs

– join indices are used to register the joinable rows of two

relations

• they are used to speed up relational join, which is a very costly

operation

• applicable in data warehouses because of their design

– they relate the values of the dimensions of a star schema to rows

in the fact table

– they can also relate multiple dimension tables

» composite join indices, which are used to select interesting

cubes

98

Indexing in OLAP

Join indexing

• example

time

time_code

year

quarter

month

sales facts table

time_code

item_code

location_code

facts_code

units_produced

item

item_code

kind

brand

location

location_code

continent

city

item dimension table

item_cod

e

kind brand

… … …

5 Printer …

6 Printer …

… … …

15 Printer …

… … …

location dimension table

location_

code

continent city

… … …

3 America …

… … …

12 America …

13 America …

facts table

time_co

de

item_co

de

location_

code

facts_co

de

units_pr

oduced

… … … 1 …

… 5 3 2 …

… 6 … 3 …

… … 13 4 …

… … 12 5 …

… 15 … 6 …

… … … … …

join index for

kind/facts_code

kind facts_code

… …

Printer 2

Printer 3

Printer 6

… …

join index for kind/location/facts_code

kind location facts_code

… … …

Printer America 2

… …

join index for

continent/facts_code

continent facts_code

… …

America 2

America 5

America 4

… …composite join index

99

Desired Features of an OLAP tool

How do we decide if a particular software tool is an

OLAP tool?

– many vendors claim to have ‘OLAP compliant’ products, but

we should not rely on the vendors’ own descriptions

– the FASMI test summarizes the OLAP definition in just five

key words

Fast Analysis of Shared Multidimensional Information

• it was first used in early 1995 and has now been widely

adopted and is cited in over 120 Web sites in about 30

countries

taken from http://www.olapreport.com/fasmi.htm

100

Desired Features of an OLAP tool

FASMI test

– Fast

• the system must deliver most responses to users within about

five seconds, with the simplest analyses taking no more than one

second and very few taking more than 20 seconds

– slow query response is consistently the most often-cited technical

problem with OLAP products

» that is the result generated by the OLAP Survey 2 based on

responses from 669 user organizations, see at

http://www.survey.com/products/olap2/

– Analysis

• the system must be able to cope with any business logic and

statistical analysis that is relevant for the user of the system and

application, and keep it easy enough for the target user

– it must allow to define new ad hoc calculations, and to report on the

data in any desired way, without having to program

taken from http://www.olapreport.com/fasmi.htm

101

Desired Features of an OLAP tool

FASMI test

– Shared

• the system must implement

– security mechanisms necessary to provide confidentiality

(possibly down to cell level)

– concurrent update locking capabilities (if multiple write access is

needed)

– Multidimensional

• the key requirement since OLAP is multidimensional

• the system must provide a multidimensional conceptual view

of the data, including full support for hierarchies and multiple

hierarchies

– we assume that this is the most logical way to analyze businesses

and organizations

taken from http://www.olapreport.com/fasmi.htm

102

Desired Features of an OLAP tool

FASMI test

– Information

• information is defined as all of the data and derived

information needed, wherever it is and however much is

relevant for the application

• an OLAP tool is evaluated in terms of how much input data it

can handle, not how many Gb it takes to store the data

– the largest OLAP products can hold at least a thousand times as

much data as the smallest

taken from http://www.olapreport.com/fasmi.htm

103

Top 10 Commercial OLAP Tools

Recent report by www.olapreport.com gives top 10

commercial OLAP products together with their

marker shares
1. Microsoft (28.0%)

2. Hyperion (19.3%)

3. Cognos (14.0%)

4. Business Objects (7.4%)

5. MicroStrategy (7.3%)

6. SAP (5.9%)

7. Cartesis (3.8%)

8. Systems Union/MIS AG (3.4%)

9. Oracle (3.4%)

10.Applix (3.2%)

taken from http://www.olapreport.com/fasmi.htm

104

OLAP Products

Specific commercial OLAP products include
• Microsoft SQL Server 2000 and 2005 Analysis Services

• Hyperion Essbase 7X

• Cognos PowerPlay 7.3

• BusinessObjects XI

• MicroStrategy 7i

• SAP BW 3.1

• Cartesis Magnitude 7.4

• Oracle Express and the OLAP Option 6.4

• Applix TM1 8.3

Also, a number of open source OLAP products,

including Mondrian and Palo, were developed

taken from http://www.olapreport.com/fasmi.htm

105

Data Warehousing and OLAP for

Data Mining

Data warehouse can be applied to perform three kinds of

tasks

– information processing

• by querying, providing basic statistical analysis, and reporting

using tables, charts and graphs

– analytical processing

• multidimensional analysis of data warehouse data by using basic

OLAP operations, like slice and dice, drilling, pivoting, etc.

– Data Mining

• knowledge discovery in terms of finding hidden patterns

• supports discovery of associations, constructing analytical

models, performing classification and prediction, and presenting

the mining results using visualization tools

106

Data Warehousing and OLAP for

Data Mining

Why Data mining systems should use Data Warehousing

technology?

– data warehouses contain high quality data

• integrated, cleaned, and consistent data which is a high-quality

source for data mining

– data warehouses provide information processing

infrastructure like:

• Open Database Connectivity (ODBC) that is a widely accepted

application programming interface (API) for database access

• Object Linking and Embedding for Databases (OLEDB) is a COM-

based data access object that provides access to data in DBs

• OLAP tools

• reporting capabilities

• web accessing

107

Data Warehousing and OLAP for

Data Mining

Why Data mining systems should use Data

Warehousing technology?

– they provide OLAP-based exploratory data

analysis

• data can be pulled out of the database by

means of drilling, dicing, pivoting, etc.

operators

– they enable very efficient selection of

relevant portions of data for mining

108

Data Warehousing and OLAP for

Data Mining

Integrated architecture for OLAP and data mining in a data

warehouse environment

Source Data
Data

Warehouse
Metadata

Materialized Views

Data Cubes

Off Line Data Mining

On Line Data Mining OLAP Engine

Interface for User Queries

109

References

Berson, A. and Smith, S.J. 1997. Data Warehousing, Data Mining

and OLAP, McGraw-Hill

Codd, E., Codd, S. and Salley, C. 1993. Beyond Decision Support,

Computer World, 27(30)

Inmon, W. 2005. Building a Data Warehouse, 4th edition, John

Wiley and Sons

Jarke, M., Lenzerini, M., Vassiliou, Y. and Vassiliadis, P. 2003.

Fundamentals of Data Warehouses, Springer

Thomsen, E. 1997. OLAP Solutions: Building Multidimensional

Information Systems, John Wiley and Sons

